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Author Summary  

 

Our ability to navigate our environments relies on the ability of our brains to form an internal 

representation of the spaces we’re in. The hippocampus plays a central role in forming this internal spatial 

map, and it is thought that the ensemble of active “place cells” (neurons that are sensitive to location) 

somehow encode metrical information about the environment, akin to a street map. Several considerations 

suggested to us, however, that the brain might be more interested in topological information—i.e., 

connectivity, containment, and adjacency, more akin to a subway map— so we employed new methods in 

computational topology to estimate how basic properties of neuronal firing affect the time required to 

form a hippocampal spatial map of three test environments. Our analysis suggests that, in order to encode 

topological information correctly and in a biologically reasonable amount of time, the hippocampal place 

cells must operate within certain parameters of neuronal activity that vary with both the geometric and 
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topological properties of the environment. The interplay of these parameters forms a “learning region” in 

which changes in one parameter can successfully compensate for changes in the others; values beyond the 

limits of this region, however, impair map formation.  

  

Abstract  

 

An animal’s ability to navigate through space rests on its ability to create a mental map of its 

environment. The hippocampus is the brain region centrally responsible for such maps, and it has been 

assumed to encode geometric information (distances, angles). Given, however, that hippocampal output 

consists of patterns of spiking across many neurons, and downstream regions must be able to translate 

those patterns into accurate information about an animal’s spatial environment, we hypothesized that 1) 

the temporal pattern of neuronal firing, particularly co-firing, is key to decoding spatial information, and 

2) since co-firing implies spatial overlap of place fields, a map encoded by co-firing will be based on 

connectivity and adjacency, i.e., it will be a topological map. Here we test this topological hypothesis 

with a simple model of hippocampal activity, varying three parameters (firing rate, place field size, and 

number of neurons) in computer simulations of rat trajectories in three topologically and geometrically 

distinct test environments. Using a computational algorithm based on recently developed tools from 

Persistent Homology theory in the field of algebraic topology, we find that the patterns of neuronal co-

firing can, in fact, convey topological information about the environment in a biologically realistic length 

of time. Furthermore, our simulations reveal a “learning region” that highlights the interplay between the 

parameters in combining to produce hippocampal states that are more or less adept at map formation. For 

example, within the learning region a lower number of neurons firing can be compensated by adjustments 

in firing rate or place field size, but beyond a certain point map formation begins to fail. We propose that 

this learning region provides a coherent theoretical lens through which to view conditions that impair 

spatial learning by altering place cell firing rates or spatial specificity.  
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INTRODUCTION 

 

 In order for an animal to be able to navigate a space, remember its route, find shortcuts, and so 

forth, it must have a fairly sophisticated internal representation of the spatial environment.  This internal 

map is made possible by the activity of pyramidal neurons in the hippocampus known as place cells. 

Place cells are so named because of their striking spatial selectivity: as an animal (in experiments, 

typically a rat) explores a given environment, different place cells will fire a series of action potentials in 

different, discrete regions of the space. Each region, referred to as that cell's “place field,” is defined by 

the pattern of neuronal firing (most intense at the center and attenuated toward the edges of the field) 

(Figure 1)—elsewhere, the cell remains silent [1].  

The mechanism of this selectivity (why a place cell fires when the rat is here rather than there) is 

opaque, and how the ensemble of place cells forms a hippocampal map of the environment is only slightly 

less mysterious. It is believed that the ensemble of place cells activated in a given environment produces a 

sufficient number of place fields to cover the animal’s vicinity [2]: indeed, a rat’s path through a small 

space can later be re-traced with a high degree of accuracy by recording hippocampal spiking activity 

during its explorations and then analyzing the location, size, and firing rates of a mere 40-50 place fields 

[3-5]. Such experiments suggest that the information contained in place cell firing patterns encodes spatial 

navigation routes and somehow represents the spatial environment. The hippocampal map thus seems to 

form the basis of the animal’s spatial memory and spatial cognition [6]. 

 How does the brain convert the pattern of neuronal firing into an approximation of the 

surrounding space? And what information is most important to navigation and spatial memory? In theory, 

the mental map could represent metrical information (distances and angles), affine aspects (colinearity or 

parallels), or topological information (connectedness, adjacency, containment). The reigning paradigm is 

that the maps encode geometric information: in fact, most efforts to analyze cognitive maps derived from 

place fields are based explicitly on the geometry of both the place fields and the environment [2,4,6,7]. 

But this can not be how the hippocampus or neurons receiving hippocampal output decode place cell 

firing, because the brain has no direct access to the place fields mapped by neuroscientists. To understand 

what algorithms the brain might use to decode hippocampal place cell firing, then, we should rely solely 

on the information provided by place cell spiking activity [8,9]. 

 If we restrict ourselves to cell spiking activity, the temporal features of the firing pattern become 

paramount: in particular, if spatial location is the primary determinant of each place cell's firing, then 

contemporaneous activity or co-firing of several place cells implies that the corresponding place fields 

overlap. It is, in fact, generally assumed that neurons downstream of the hippocampus interpret place cell 

spiking patterns based on co-firing. What is not often appreciated, however, is that if place cell co-firing 
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implies spatial overlap of place fields, then the map formed by co-firing is going to be based on 

connectivity, adjacency and containment—in other words, it will be a topological, rather than a 

geometric, map. 

 Indeed, the way place fields cover an environment calls to mind a basic theorem of algebraic 

topology: if one covers a space X with a sufficient number of discrete regions, then it is possible to 

reconstruct the topology of space X from the pattern of the overlaps between the regions [10].  We 

propose that the hippocampus actually does create a connectivity map derived from place cell co-firing 

patterns. Although we do not imply any specific interpreting mechanism, we propose nevertheless that it 

is possible to derive spatial information from place cell firing, with specific implications (and quantifiable 

predictions) for the qualities of the hippocampal spatial map. We hypothesize that the connectivity map is 

topological, i.e., any finite structure of overlaps between spatial regions, as represented by temporal 

overlap of spike trains, can be realized using regions of different shapes or sizes. One implication of this 

hypothesis is that the information contained in the spike trains is qualitative in nature and can be studied 

using topological techniques. This is not to deny that the hippocampal connectivity map could contain 

additional space encoding mechanisms for geometric information (scale, distances, angles)—this question 

would have to be answered experimentally. Nevertheless, a number of experiments [11-14], have 

demonstrated that smooth geometric variations of the environment produce continuous stretches of the 

place field layouts that preserve the relative timing between spikes, so that the temporal pattern of spiking 

remains largely invariant with respect to geometric transformation. This provides some experimental 

support for our mathematical intuition. 

 Here we investigate whether a topological connectivity map can be effectively and reliably 

derived from neuronal spiking patterns using computational tools recently developed in the field of 

algebraic topology. We show that there exist certain requirements for the firing activity to produce a 

stable topological map and that the experimentally observed characteristics of firing activity likely satisfy 

these requirements. 

 

RESULTS 

We will first outline the key concepts underlying our approach; more precise mathematical explanations 

are provided in the Methods section for interested readers. 

 

Our topological framework: simplicial complexes, spatial and temporal 

 

 In algebraic topology, the topological features of a space   are defined by its topological 

invariants, i.e., those properties of the space that are invariant to applied transformations.  Topological 



 5 

invariants are described via indices, the simplest of which are the so-called Betti numbers that formalize 

the counting of loops and holes in various dimensions. The zeroth Betti number,      , counts the 

connected components in the space X;       gives the number of one-dimensional (1D) loops,       the 

number of two-dimensional (2D) loops, and so on (see Methods and [10]). The Betti numbers can be 

calculated by an algorithm that analyzes the “cover” of a space   by an ensemble of discrete regions [15]. 

This algorithm uses “nerve of the cover” or “nerve simplicial complex,”     , which has as many 

vertices as there are regions used to cover the space  . If two regions overlap, the corresponding vertices, 

say, vi and vj, are considered connected by a 1D bond vij. If three regions overlap, then three bonds, vij, vjk, 

and vki, support a 2D triangular facet, and so on, as the number of overlaps and bonds increase. The 

complex      obtained from a sufficiently dense cover of the space   will reproduce the correct 

topological indices of   (see Methods for a more precise definition of “sufficiently dense”). The structure 

of the simplicial complex thus approximates the structure of the environment (see Methods). 

 Drawing on this concept of the nerve simplicial complex     , whose structure can be used to 

deduce the structure of a space, we devised a temporal analogue, the temporal simplicial complex   that 

should give a complete topological description of a space X in terms of place cell co-firing. The difference 

is that the structure of the temporal simplicial complex   unfolds over time,       : as the animal 

explores its environment and more place cells fire (and co-fire), the structure of the complex      grows 

as T increases with the number of spikes. It should thus be possible to trace the emergence of topological 

information as more and more spikes are fired. When the animal is first introduced to the environment, 

there would be few data points from place cell spiking, but the data would accumulate as the animal 

explores, enabling the formation of an internally consistent topological map. Eventually, after a certain 

minimal time  ̅   , the structure of      should saturate, and its topological characteristics should 

stabilize and produce the correct topological indices, which would indicate the completeness of the 

topological information. 

 Given a certain experimental, phenomenological or theoretical description of place cell firing, it 

should be possible to trace the accumulation of topological information with T and discover how much 

time  ̅    is required to produce the correct topological signature of a particular environment. The 

temporal framework we propose does impose certain requirements, however: just as there must be a 

sufficient number of place fields covering a space   in order to produce a coherent map of that space, we 

predict that there are certain conditions that must be met by place cell activity if we are to be able to rely 

solely on the temporal overlap between neuronal spike trains. First, there should be sufficient co-firing of 

place cells. Second, the place cells should have sufficient spatial specificity (though there will be a certain 

amount of biological noise). Third, there should be a realistic learning period in which true signals can be 

distinguished by their persistence beyond biological noise. These criteria may or may not be met by the 
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hippocampus, given the high variability of biological systems [5], but they follow from our topological 

hypothesis. In this paper we use newly developed methods from Persistent Homology theory (see 

Methods) to test our hypothesis and to study the temporal dynamics of topological information emerging 

from the spikes.  

 

Selecting parameters on which to base the model 

 

 The parameters that might be taken into account to define place cell activity are numerous and 

complex: there are biophysical variables (firing rates, spike amplitude, etc.), behavioral variables (the 

animal’s running speed, etc.), out-of-field firing (not all place cell firing is for spatial encoding purposes), 

and so forth. For the sake of simplicity, at least for this first attempt to model place cell ensemble 

behavior, we zeroed in on just a few key parameters that will still enable us to ask key questions.  

 First we had to decide how to define temporal overlap between spike trains. There is some 

conjecture in the field that each theta cycle—the basic EEG cycle in the hippocampus, with a frequency 

of      —defines a temporal unit of processing [16,17]. This suggested to us that we might describe 

neuronal activity in terms of firing rates, defined over time bins comparable to the theta cycle. Absent any 

data that speaks directly to this, we defined co-firing as firing that occurred over two consecutive theta 

cycles. 

For this initial analysis, we ignored the details of the spike train structure, such as spike bursting 

[18] and phase precession [19-21] focusing instead on the total number of cells (N), the firing rate ( ), 

and a computationally derived place field size ( ).  (In other words, whereas place fields are typically 

created by mapping recorded neuronal firings onto an actual rat’s trajectory through a particular 

environment, our algorithm ascribes size on the basis of the spread of simulated data points. See 

Methods.)  

 Thus, for an N-cell ensemble this approach produces 3N independent parameters,            and 

                ,                 . Since we are interested in the behavior of the cell ensemble and not 

just the firing rate of a single place cell or the size of an individual place field, however, we define the 

values    and    by the probability distributions      and     . Fig. 2 shows a typical shape for these 

distributions derived from experimental data collected on a linear track (unpublished data, Y.D. and L.F.); 

these data can be naturally fit by a log-normal distribution with a certain mean and a certain standard 

deviation, ( ̅   ) and   ̅    , respectively. We further assumed that spiking dynamics are attributable 

solely to the rat's movement through the environment, i.e., that the probability distributions      

 (   ̅   ),  and           ̅     do not depend on time. It is important to note, however, that place 
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fields can be highly plastic during the first few minutes in a new environment [22], so our estimates of the 

time required to build an accurate topological map are likely to be lower bounds.  

 Given these starting assumptions and simplifications, the individual firing rates     and place field 

sizes    are simply random variables drawn from the stationary distributions      and     , so the total 

number N of cells can be treated as another independent parameter characterizing the ensemble. With N 

included, the activity regime of a place field ensemble is specified by just five parameters:  ̅   ,  ̅     and 

N. To further reduce the number of parameters in our model, we capitalized on the fact that the mean and 

the standard deviation of the distributions      and      can be compared to actual experimental data 

and are thus not arbitrary (see Fig. 2).  We can therefore avoid overly broad or overly narrow distributions 

     and      by imposing the additional conditions       ̅and      ̅, (the higher the individual 

firing rates and place field sizes found in the ensemble, the wider the spread) and selecting the 

proportionality coefficients a and b so that the shape of the distributions       and      mimics those 

derived from the experiments. In our computations we used a = 1.2  and b = 1.7 (as in Fig. 2). This last 

simplification reduces the number of parameters to just three— ,̅  ̅, and N —which gives us a 3D 

parameter space that can be readily simulated and visualized. 

 Given the temporal nature of our map formation model, we will adopt one more simplifying 

assumption, namely, that all the instances of co-activity that occur between T = 0 and        are 

“remembered'' and can be used to establish the structure of the temporal complex     . Clearly, any 

“forgetting'' mechanism would cause the temporal complex to deteriorate; information provided by new 

spike trains could compensate for this loss, but transience of data would increase the map formation time 

    . 

 

The model 

 

 The foregoing considerations led to the following (very simplified) working model of place cell 

activity:  

1. Place cell firing activity is a stationary Poisson process described by the rate model [1] (see 

Methods). Theta oscillations, bursting and other effects are not considered. 

2. Two cells are considered to be co-active if they fire within two consecutive periods of theta 

oscillations, i.e., within ~ 1/4 sec. We expect shorter time windows would require longer periods 

for map formation, so this value helps us establish a lower bound on the length of time required to 

extract connectivity information. 

3. The firing rate amplitudes (fi) and the computed place field sizes (sx,1, sy,1) of the cells in the 

ensemble are described by independent probability distributions P(), where we used the mode 
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 (to identify the peak of the distribution) and the standard deviation  (e.g., the log-normal or 

the gamma distributions). In our simulations we used log-normal distributions with       ̅and 

     ̅, a = 1.2  and b = 1.7. 

4. Retained memory assumption: all firing events occurring up to time T can be used in the analysis. 

We ignore place cell firing that occurs because of the internal dynamics of the hippocampal 

network (such as reactivation of past experience [23]). 

  

Our analysis is based on the dynamics of "cycles," objects that can be used to count the number of 

topological holes within the temporal complex      (Fig. 3, Methods). The intuition informing our 

approach is that, at early stages of exploration, only a few co-firings will have occurred and so the 

complex will not adequately represent the topological structure of the environment. As the rat begins to 

explore an environment at time T = 0, the temporal complex will consist mostly of 0-cycles, marking the 

cells that have fired but not necessarily co-fired. As the rat continues to explore the environment, the co-

firing cells will produce links between the vertices of     , and higher dimensional cycles will appear. 

Fig. 3 shows the cycles in each dimension as a function of time: each horizontal bar represents the 

timeline of a particular cycle in the complex     .   

At any time T, a vertical section will encompass the timelines of all the cycles that are present in 

     at that moment. Once born, a cycle remains stable over a certain period of time, but as T increases, 

most cycles in each dimension will disappear as so much “topological noise,” leaving only a few 

persisting cycles that express stable topological information. The beauty of this Persistent Homology 

method [24] (see Methods) is that it accommodates such noise so we can distinguish between cycles that 

persist across time (reflecting real topological characteristics) and transient cycles produced by the rat’s 

behavior (e.g., circling in a particular spot during one trial). 

 The time required for the correct number of bars (cycles) to appear in every dimension is, by 

design, the time required to extract the correct topological signature of the environment, which can thus 

be interpreted as the minimal time  ̅    required for the rat to learn the environment. Since this procedure 

can be applied to various place cell ensembles with different firing profiles, the Persistent Homology 

method allows us to determine how  ̅     varies with the parameters of hippocampal firing activity. In 

effect, each set of parameters will produce a “barcode” that can be “scanned” in order to discern the 

topological structure of the environment. 

 

Map formation depends on hippocampal state 

 

 We simulated map formation times using different place cell parameters and three separate planar 
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2  2 meter areas with 1 or 2 holes (Fig. 4, top row). (We chose this size because it is similar to that of 

experimental spaces used for neuroscientific studies of rat place cell properties.) The topological features 

to be detected are the number of holes in each environment. For the 2-hole environments we considered 

two cases with different hole sizes to vary the geometrical characteristics of the environment while 

keeping its topology fixed.   

 The trajectories were simulated to be: 1) sufficiently ergodic to represent non-preferential 

exploratory spatial behavior (i.e., there was no artificial circling or other ad hoc favoring of one segment 

of the environment over another). The spatial occupancy of the immediate vicinities of the holes and of 

the corners was therefore higher than the average, which is similar to patterns of spatial occupancy in the 

open field and linear track experiments. 2) The mean and the maximal speed were kept within the range 

of typical experimental values (based on our experience; the mean speed was chosen to be slightly higher 

than a typical experimental mean value in order to get a lower estimate for the learning time  ̅   ). 

Lastly, 3) the distribution of the moment-to-moment changes in the direction of the simulated rat's 

movement,      , matches the experimental histogram of      . 

 We asked whether, and for which ensembles, the place cell spiking signals would be able to 

produce a temporal simplicial complex with the correct number of topological loops (Betti numbers; see 

Methods) in every dimension—the connectivity of the space (0D loops) and the correct number of 1D 

loops.  In each of these environments we simulated a set of 1000 place cell ensembles by independently 

varying three parameters of neuronal activity. We probed ten distributions of firing rates, with the mean 

maximal rate,  ,̅ ranging from 2 to 40 Hz, and ten distributions for the place field sizes with  ̅ ranging 

between ~10 and ~90 cm. The size of the population varied independently from N = 50 to N = 400 cells. 

In each case, the centers of the place fields were scattered randomly and uniformly over the environment.  

For each combination of the parameters  ,̅  ̅, and N —which we can say defines a hippocampal ‘state’—

the computation was repeated 10 times (total 10  10  10 10 =10,000 ensemble simulations), which 

allowed us to compute the average time  ̅      required for the emergence of the correct topological 

signature for each specific choice of the ensemble parameters,  ,̅  ̅, and N. Although the simulated 

trajectory was fixed, we chose a new set of place field centers for each set of  ,̅  ̅, and N for each 

repetition. 

 The results are shown in Fig. 4. The three panels across the second row show the mean map 

formation times  ̅    (in minutes) for each of the three environments in the top row. Each point on this 

diagram represents a particular place cell ensemble with a certain mean ensemble firing rate  ,̅ mean 

place field size  ̅, and number of cells N. The sizes of the dots represent the percentage of repetitions in 

which a given set of parameters ( ,̅  ̅, and N) produced the correct outcome: the largest dots correspond to 
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the most successful ensembles, and the sizes of the smaller dots represent the percentage of trials 

producing the correct outcome for that set of parameters. The color of the dots represents the value of the 

mean map formation time  ̅    (see Figure legend).  Some ensembles consistently produced the correct 

topological signature for all 10 repetitions, even in very short time frames (large blue dots), whereas other 

ensembles either produced the correct signature in only a fraction of repetitions (smaller dots) or 

repeatedly failed to produce the correct result over long periods of time (smallest red dots;  ̅       

mins, i.e., ~20,000 theta cycles). 

 These data illustrate, first, that the firing activity of smaller place cell ensembles (       , 

characterized by low mean firing rates ( ̅        ) and by small mean place field sizes ( ̅       ), 

consistently failed to produce the correct topological characteristics of the environment. Similarly, 

ensembles with very large place field sizes (low spatial selectivity of the place cell's firing, high  ̅ values) 

also failed to produce the correct topological signature. Both types of cases are represented by the dots on 

the periphery of each cloud (Fig 4, second row). In contrast, larger place cell ensembles with higher 

firing rates and well-tuned place fields reliably captured the topological structure of the environment 

within 2-5 mins. As a result, each point cloud can be conceived as containing within its fuzzy boundaries 

a learning region L: a submanifold in the space encompassing the hippocampal states that produce the 

correct topological map within a biologically plausible time-frame. This pattern is clarified by the 2D 

sections of the 3D diagram (Fig. 5 and Suppl. Figs. 1 and 2). 

 It is noteworthy that the points with intermediate sizes, representing the partially failing 

ensembles, tend to diffuse out from the center of L to the sparser boundary region of the cloud. This 

neatly illustrates the transition that occurs between the hippocampal states that consistently produce 

stable, topologically accurate maps (interior points of L), and those that do not (dots outside of L). Thus, 

for all hippocampal states within L, the  ̅    values show an orderly, regular dependence on all three 

variables  ,̅  ̅, and N. Despite the stochastic nature of the model, then, the minimal map formation time  

 ̅    can be approximated by a well-defined, continuous function of the parameters,  ̅    

  ̅      ̅  ̅   . If the firing activity regime moves out of L, then the time   ̅     abruptly increases at the 

boundary of this region.   

 

The map formation region is stable and robust 

 

 It is noteworthy that at the core of L, the characteristic minimal map formation time is  ̅    

    mins, which is comparable to the biological learning time in rats and mice in simple environments 

[25,26]. Indeed, the characteristic time  ̅     is shorter than the time it takes the trajectories themselves to 

cover environments A, B, and C (see Fig. 6); in other words, the topological model forms maps more 
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rapidly than simply computationally covering the simulated space. As noted above, one of the key 

hypotheses of our model is that map formation time  ̅    is included in the biological learning time. We 

reasoned that before the “topological noise” stabilizes, it is not possible to tell how many correct loops 

there will be or which ones are going to persist (see Fig. 3), so that prior to  ̅    the spatial information 

encoded by place cell firing is unstable and probably incomplete. Therefore, if the spatial map produced 

by hippocampal activity is based on interpreting the co-firing patterns, one of the main qualitative 

predictions of this approach is that the biological learning time can be estimated by  ̅   . If, for example, 

the map formation time for a place cell ensemble in Rat A is  ̅   
 , and for a place cell ensemble in Rat B 

is  ̅   
 , and  ̅   

   ̅   
 , then Rat A will take longer to learn an environment than Rat B. This difference 

should be observed in the Morris water maze task and other behavioral experiments.    

 Figure 4 also shows that the size of the learning region L depends on the complexity of the 

environment. L is largest for environment C, in which topological connectivity is defined by the quasi-

linear order of place cell firing. The region L for environment B is the most compact, reflecting the fact 

that this environment is topologically the most complex because the navigational paths are indexed by 

two topological indices (defined by the fundamental group   ), so that two persistent loops have to be 

extracted from a set of non-persisting loops. At the same time, it is also more geometrically complex than 

the quasi-linear environment (C), because it allows 2D motion.  

 It is also important to note that the mean map formation time  ̅    produces a stable, robust core 

of the learning region L. To characterize the stability of  ̅    values, we considered the standard deviation 

of the minimal map formation times,   ̅   , computed for each fixed value of  ,̅  ̅, and N.  The third row 

of panels in Fig. 4 demonstrates the relative standard deviation of the map formation times,        ̅    

as a function of  ,̅  ̅, and N. The variations in map formation times increase towards the boundary of the 

learning region, i.e., the place cell ensembles defined by parameters at the boundary of L are successful 

only a fraction of the time—these ensembles are “unstable” in their map formation ability, or we might 

say the maps themselves are unstable. (One can imagine a rat with some impairment being unable to learn 

a space because its mean place cell firing rate is a little too low to produce consistent information about 

the test environment.) Inside L, the values of  ̅    vary less. To emphasize this, the subregion      of 

points   ( ̅  ̅      ) in which the relative standard deviation of the      values is less than 15% 

(       ̅        ) (Fig 4, third row). 

 Finally, in order to single out the hippocampal states for which the mean map formation time  

 ̅    is not only biologically plausible but also robust, we combined the requirements   ̅       mins 

(used to build Fig. 4ii) and        ̅        . The resulting robust learning region at the core of L (Fig. 

4iv) shows that the parameters of the place cell ensemble that guarantee reliable map formation form a  
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well-defined submanifold in the parameter space.  This submanifold can be computed using the methods 

outlined above for each specific environment and for each specific model of neuronal firing, allowing us 

to relate the geometric and the topological features of the space with the biological parameters of 

hippocampal place cell activity. 

 In summary, it is usually assumed that an ensemble of cells with spatially selective firing will 

naturally encode a spatial map. Our results demonstrate that the spatial selectivity of firing does not, by 

itself, guarantee a reliable mapping of the actual environment. The geometric shape of the learning region 

L and the distribution of the   ̅    values within L depend on the global geometry and topology of the 

environment. This means that place cells cannot be ‘agnostic’ about the scope and nature of the spatial  

encoding task: the geometry of the environment sets limits on the parameters of neuronal activity that are 

able to lead to a coherent topological map. Despite the stochastic nature of the system, well-defined mean 

map formation times  ̅    not only exist inside of the stable learning region L, but their values can be 

approximated by a continuous function of the place cell ensemble statistics. The latter implies that a 

continuous variation of the hippocampal state within L will result in a continuous change of the mean 

map formation time value   ̅   . The hippocampus can thus change its operating state inside L without 

compromising the integrity of the topological map, such that the size and the shape of L reflect the scope 

of the biological variability that the hippocampus can afford in a given environment. The larger the region 

L, the more stable the map. 

 

DISCUSSION 

 

 We have examined the dynamics of hippocampal spatial map formation beginning with arbitrary 

place cell activity regimes, both those that resemble biological cells and those that do not. We created a 

computational program to simulate map formation with three independent variables: the firing rate of the 

place cells, the size of the place field, and the number of cells. We then tested the model on three different 

scenarios (which included two topological configurations and two different geometries), and repeated the 

simulation in each scenario 10 times prior to statistical analysis.  Our simulations show that in order to 

form a reliable topological map of the environment, the place cell ensemble must operate within certain 

parameters—outside these parameters, place cells can be spatially specific but will not be able to produce 

a reliable map. It is noteworthy that the parameters for place cell firing and place field size that produced 

a robust map formation region L correspond well with experimentally observed place cell firing rates and 

place field sizes: when the simulated place cells fired at rates either below or above a certain range, or 

when the simulated place field sizes fell above or below a certain range, what we call the learning region 
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failed to form (Figure 5, Suppl. Figures 1 and 2). Mathematically, the model could have required any 

set of values to work: firing rates of 500 Hz and place field sizes of 2 cm, for example. There was no a 

priori reason that the parameters should fall so neatly into biological range. The fact that they do lends 

support to our topological paradigm, despite the simplicity of this first model. 

 

Other parameters and models of place cell behavior 

 

 Our current model relies on a simple spike train structure based on a Gaussian firing rate 

(Methods). We ignored many biological parameters of place cell activity, such as synaptic connections, 

theta phase procession and spike bursting, and out-of-field firing.  The ensembles we used were also 

rather small, ~400 neurons, which is less than 1% of the number of cells that are believed to be active in a 

rat’s hippocampus during its exploration of a new environment [27] and about 2% of that number for 

mice [28]. Larger numbers of cells can be incorporated into future versions of the model, which will lead 

to a more realistic description of the hippocampal spatial map. Although we expect that the quantitative 

predictions of the model will change as more subtle neurophysiological phenomena are included, we do 

not anticipate that the overall structure outlined in the current, basic model will change qualitatively. For 

example, preliminary analyses suggest that the phenomenon of theta precession and multiply connected 

place fields affect map formation time, i.e., the size and the shape of region Lmodel but do not change the 

fact of L's existence or the existence of the function  ̅     ̅   (  ̅  ̅      ).  

 One could conceivably choose any valid set of parameters to define hippocampal states that 

produce a model-defined learning region Lmodel. The result will correspond to the actual, biological place 

cell map only to the extent that the starting model accurately captures relevant aspects of place cell 

activity. For example, the Continuous Attractor Neural Network Models [29], which includes (among 

other things) synaptic efficacies, could be tested for the topological completeness and robustness of the 

map that it produces. In the absence of exact knowledge about place cell activity in a specific animal, the 

structure of Lbio  can be studied using statistically defined (experimental or model-generated) 

characteristics of neuronal activity.  The approach we have outlined here is thus one means of testing the 

efficiency of other place cell activity models in forming spatial maps.   

 The topological model predicts that: (1) the parameters describing the hippocampal place cell 

map in healthy animals should fall inside of the stable learning region L computed for the given 

environment, and (2) the hippocampal state might drift towards the boundary of stability or even leave the 

stability region as a result of a deterioration of neuronal activity. As long as the parameters used in the 

model are phenomenological characteristics of neuronal firing, the structure of the learning region Lmodel 

will define the effect that a particular parameter has on the hippocampal place cell map as a whole. With 
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this approach, there is no need for a priori assumptions about place cell firing rates or the parameters that 

define place field sizes. Instead, the correct values can be estimated based on the structure of the 

computed stability region. The fact that the values typically observed in electrophysiological recording 

experiments fall within the region of stability shown in Fig. 4 is a testament to the validity of the 

grounding assumptions of our model as outlined above. 

 

Implications of the topological model for spatial learning.  

 

 Despite its simplifications, the current model allows us to examine whether a particular set of 

place cell parameters can be used to map a given environment and vice versa, and to reason about the 

effect of the geometry and topology of an environment on place cell behavior. For example, Figure 4 

demonstrates that greater topological complexity reduces the size of the stable learning region L by 

constraining the range of hippocampal states capable of forming accurate maps in a reasonable amount of 

time. This is, in fact, what is observed in experiments that include a large number of objects (enriched 

environments) and are thus more geometrically and topologically complex than the standard 

environments: the firing rates and the number of active cells tend to increase [30,31], and the place fields 

become more sharply tuned [6].  

 Although the current model does not describe the formation of place fields themselves, it 

provides some insight into the process of learning in novel environments. Place fields show considerable 

plasticity over the course of learning new environments, expanding in adaptation to large environments 

[32] or over the course of several days of learning (with a concommitant decrease in the number of place 

cells firing at high rates) [33]. (As presciently noted by Shen et al. [34] in a study of aging rats, the 

expansion of place fields increases the amount of place field overlap, which can encode more 

information, at least up to a point.)  Furthermore, Karlsson et al. [33] reported that a stable high rate cell 

population ( ̅       ) emerges over the course of learning a new environment. More specifically, while 

the overall population firing rate diminishes with learning, the spatial specificity of a small proportion of 

active cells increases, while neurons that are weakly spatially tuned are suppressed. This is precisely the 

sort of compensation within L predicted by our model: the hippocampus is free to adopt the most efficient 

parameters within the learning region once a space is learned, and map formation remains stable. 

 Indeed, perhaps the most striking aspect of the current study is not that it supports the hypothesis 

that the hippocampus encodes topological information about the environment, but that the learning region 

L, which reflects the scope of biological variability that the hippocampus can afford in a given 

environment, is rather large. Given the importance of spatial navigation, and thus spatial map formation, 

to the lives of most animals, it is not surprising that there should be such a wide range of possible firing 
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rates, place field sizes, or cell numbers capable of forming a map of a simple space. (Lose the ability to 

navigate reliably, and one’s lifespan shortens dramatically.) Our model would predict that a degenerating 

brain that is losing place cells might initially compensate by upregulating firing rate and that such 

compensation might take place for quite some time before function is noticeably impaired. 

 Numerous studies have documented spatial learning deficits and changes in place field 

characteristics in mice bearing specific genetic mutations, but the connection between behavioral changes 

and the changes in place field properties has been unclear. We suggest that significant alterations of place 

cell behavior result in hippocampal states hovering at or beyond the boundaries of L that cannot 

consistently support spatial learning. In mouse models of Alzheimer disease (AD), for example, the place 

fields are larger (less spatially specific), the firing rates lower, and the number of active cells smaller 

[35,36]. We speculate that the hippocampal map in AD does not do its job because the parameters of 

place field activity fall outside the core of the learning region Lbio and therefore cannot reliably encode 

spatial information. Similarly, acute ethanol intoxication causes place fields to lose their specificity 

temporarily suppresses place cell firing rate in a dose-dependent manner [37], and the place fields 

concomittantly lose their spatial specificity [38]; according to our proposed model, the lowest doses of 

ethanol do not compromise the rat’s navigational ability because they allow the place cells still to operate 

within the learning region. Our model could thus help shed light not only on the process of learning in 

novel environments, but also on how such abilities can be lost.  

 

METHODS 

 

We open this section by outlining the assumptions we made about place fields and place cells in this first 

attempt at a model of hippocampal spatial map formation. We then define key theoretical concepts from 

algebraic topology that motivated our particular computational approach, particularly relating to the 

relatively new tools of Persistent Homology theory.  

 The three environments and simulations of rat trajectories. Each experimental environment 

depicted in the top row of Figure 4 is 2 meters square. The hole in scenario A is             ; the two 

holes in scenario B are              and           , respectively; both holes in scenario C are 

             . We simulated rat movement to have a mean speed of           (with a range from 

         to          ) and designed the trajectories to mimic how a rat moves in actual open field 

experiments: moment by moment, the animal's head changes position by some amount      , and we 

reconstructed the histogram of the       distributions from recorded trajectories so they match the 

bimodal distribution as found in [39].  

 Simulating place cell firing. For this initial analysis, we ignored the details of the spike train 
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structure, such as spike bursting [18] and phase precession [19], and used the simplest cell firing model 

based on the time rescaling theorem (modeling spiking as “Poisson noise”) [40]. In this approach, place 

cell firing is represented by an inhomogeneous Poisson process with a time-independent rate function 

     ⃗ , which is a function of the animal's position,  ⃗ and which produces stochastic firing around 

place field centers. These Gaussian place fields are not characterized by sharply defined boundaries. Our 

model thus allows for noise from "erroneous spikes" that may connect PFs in one case and not connect 

them in another. In the simplest case that is commonly used for place cell activity modeling (cf. [3]), the 

firing rate    of an individual cell    is modulated by a single peak 2D Gaussian function,  

    ⃗     
 
( ⃗  ⃗ 

 )
 

   
 

  

 

centered around the point  ⃗ 
  (the center of the  th place field) with the variance   

       
      

  .  

 Assumptions regarding place fields. In this model, we assume that: 1) Place fields are ellipsoid 

and omni-directional, as typically recorded in open field environments [41] and are derived from a 2D 

Gaussian rate function (see below.) 2) Place fields within each given simulation are stable, i.e.,     , the 

probability distribution of place fields does not change over time. 3) The place field sizes vary according 

to a log-normal distribution, the center being   -mean (cf. Fig. 2). Because our simulations varied both the 

number of place cells and the size and shape of place fields, we expect that some combinations of 

parameters tested—e.g., a combination of low cell number   and small mean place field size  —will fail 

to cover the experimental space, while a large   should cover the area uniformly. Indeed, we found that 

low   and   -mean produced high rates of map formation failure (see Figures 4 and 5).  

 Simplicial complexes. Simplicial complexes are used to approximate the structure of topological 

spaces [42]. For example, a tetrahedron, as a simplicial complex, consists of four triangular facets, six 

linear edges, and four points in Euclidean space. Each one of these elements is by itself a smaller simplex; 

this hierarchy is captured in the notion of an abstract simplicial complex, in which the tetrahedron is 

thought of simply as a set of 4 elements, and any of its 3-element subsets corresponds to a facet, any 

subset of two corresponds to a segment or edge, and any subset of one corresponds to a vertex. Therefore, 

given a set of vertices  , a   -simplex is an unordered subset {          }, where      and       

for all    . The facets of this  -simplex consist of all      -simplices of the form 

                   , for some      . Geometrically, the  -simplex can be described as follows: 

given     points in Euclidean space    (   ), the  -simplex is a convex body bounded by the union 

of       linear subspaces of    defined by all possible collections of   points (chosen out of     

points). Any abstract simplicial complex on a (finite) set of points   has a geometric realization in some 
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  .  

 It can be shown that topological features, e.g., holes in the environment, correspond to loops in 

the simplicial complex, which can be detected through combinatorics of the simplices. It is possible to 

determine, for example, whether two points in the complex are connected by a sequence of edges or not. 

The simplicial complex produced by the overlaps between the place fields covering the environment is 

known in algebraic topology as the "nerve of the cover" or the "nerve simplicial complex"      

[10,43,44].We use the abstract simplicial complex to interpret the pattern of temporal overlaps between 

the place cell spike trains. 

Homology theory. The hypothesis that drives this project is that the hippocampus encodes a 

topological map. To begin our investigation we ask whether the topological map produced by the place 

cells captures the most basic topological features of the environment, namely, the number of holes in it. 

This question can be addressed using homology theory, which aims to detect homologous loops and to 

categorize holes in a space. Since the structure of the nerve simplicial complex approximates the structure 

of the environment, we can use homology theory to count the loops in the simplicial complex and 

therefore the number of holes in the environment.  

 There are numerous variants of homology: we use simplicial homology with    coefficients (the 

algebraic system consisting of the Boolean values 0 and 1, equipped with "and'' as the multiplication and 

"exclusive or'' as addition).  

 Betti numbers and Homology groups. Let   denote a simplicial complex. Roughly speaking, 

the homology of  , denoted      , is a sequence of vector spaces      ,          , where       is 

called the  -dimensional homology of  . The dimension of      , called the  th Betti number of  , is a 

coarse measurement of the number of different  -dimensional structures, e.g., "loops'' in  , that cannot be 

collapsed or deformed into one another (see Fig. 7). For example, the simplest basis for       consists of 

a choice of vertices, one in each path-component of  . Hence the dimension of       is equal to the 

number of connected components of  . Likewise, the simplest basis for       consists of looping 

sequences of 1D edges in  , which surround holes in  . For example, if   is a 1D graph, then the space 

      encodes the number and types of loops in the graph.  

 Cycles, boundaries and homotopies. For each    , let       be the vector space whose basis 

is the set of oriented  -simplices of  ; that is,   -simplices {       } together with an order type 

denoted [       ] where a change in orientation corresponds to a change in the sign of the coefficient:  

[                 ]   [                 ] 

if an odd permutation is used. For   larger than the dimension of  , we set        .  

 The boundary map is defined to be the linear transformation            which acts on basis 



 18 

elements [       ] via 

 [       ]  ∑     
 

   

[                   ]  

This gives rise to a chain complex: a sequence of vector spaces and linear transformations 

 
 
     

 
   

 
     

 
   

 
   

 
   

 
     

Consider the following two subspaces of   : the cycles (those subcomplexes without boundary) and the 

boundaries (those subcomplexes which are themselves boundaries) formally defined as: 

 k-cycles:                       

 k-boundaries:                      

 A simple lemma demonstrates that      ; that is, the boundary of a chain has an empty 

boundary. It follows that    is a subspace of   . This has significant implications. Just as 1D loops on 

graphs, the   -cycles in   are the basic objects which count the presence of "holes of dimension   '' in  . 

Certainly, many of the   -cycles in   are measuring the same hole; still other cycles do not really detect a 

hole at all—they bound a subcomplex of dimension     in  . We say that two cycles   and   in       

are homologous if their difference is a boundary: 

[ ]  [ ]             

 The   -dimensional homology of  , denoted       is then the quotient vector space 

                ⁄ . 

Specifically, an element of       is an equivalence class of homologous   -cycles. This inherits the 

structure of a vector space in the natural way [ ]  [ ]  [   ] and  [ ]  [  ] for     . The  -th 

Betti number of   is then formally defined as the dimension of the  -dimensional homology group:  

               

 A map       is a homotopy equivalence if there is a map        so that     is homotopic 

to the identity map on   and     is homotopic to the identity map on  . This notion is a weakening of 

the notion of homeomorphism, which requires the existence of a continuous map   so that     and     

are equal to the corresponding identity maps. The less restrictive notion of homotopy equivalence is 

useful in understanding relationships between complicated spaces and spaces with simple descriptions. 

 By arguments utilizing barycentric subdivision, one may show that the homology       is a 

topological invariant of  : it is indeed an invariant of homotopy type. Readers familiar with the Euler 

characteristic of a triangulated surface will not find it odd that intelligent counting of simplices yields an 

invariant. For a simple example, the reader is encouraged to contemplate the "physical'' meaning of 

     . Elements of       are equivalence classes of (finite collections of) oriented cycles in the 1-
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skeleton of  , the equivalence relation being determined by the 2-skeleton of  . 

 Building simplicial complexes from the spike data: Moving from spatial overlap of place 

fields to temporal overlap of spike trains. Given a set of place fields {             }, with specified 

shapes and locations, one can use a simple algorithm to construct the simplicial complex   with vertex 

set {       } (one vertex per cell/place field). Two vertices    and    are connected by an oriented 1D 

bond     [  ], if the corresponding regions     and     overlap. Three vertices support an oriented 2D 

facet      [   ], if there exists an overlap of three regions    ,     and    , and so on. In general, a 

simplex            [         ] is in   if and only if  

                    

This is the so-called "Czech simplicial complex'' or the "nerve'' complex   [10,44]. It can be shown that 

if the set of   s, {             }, covers the space  ,  

  ⋃   

 

   

 

sufficiently densely, then, under fairly general conditions, the nerve complex   has the same homotopy 

type as the underlying space  , and so the topological invariants computed from   will agree with those 

corresponding to   [10,15,44]. To be precise, “sufficiently dense” here means that each point of space   

is contained in at least one place field, and each finite intersection of the fields is contractible.  

 In the context of studying a hippocampal map formation, in which the analysis is based on 

temporal characteristics of place cell activity, the simplicial complex can be constructed using the notion 

of temporal overlap between the spike trains rather than spatial overlap between place fields. The 

intuition is the following: If the rat happens to visit the location in space spanned by             

      , then there is a non-zero probability that the cells    ,    , ...,     will produce spikes at roughly 

the same time. Then the coactivity of the place cells can be interpreted as spatial connectivity: if at any a 

moment of time   during the observation period, two neurons    and    cofire, then there is a link between 

the corresponding vertices; if three neurons   ,    and    cofire, then there is a 2D facet between the 

vertices and so on. We are therefore led to considering the following rule: fix     and    . Then 

simplex  

[         ]   ̂      [   ] such that      {     } |    [       ]|     

This defines a "temporal simplicial complex''  , which is a direct analogue of the "spatial'' simplicial 

complex, which summarizes the information contained in the pattern of temporal overlaps between the 

spike trains and gives a complete topological description of the space  .  

 This construction achieves the goal of providing us with a topological method that can tell us 
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whether cells are indeed receiving all the information necessary for reconstructing the topology of the 

environment. The main question discussed in the paper is whether and to what extent different 

hippocampal states (as defined by variations in the mean firing rate  ,̅ mean place field size  ̅, and the 

number of cells  ) affect the network's ability to encode topological information. 

 In theory, there are two ways in which one can build simplicial complexes in order to describe the 

topological information contained in place cell firing activity: use place field geometry or place cell spike 

trains. How are the corresponding simplicial complexes   and   related? 

 It is often remarked that homology is functorial, by which it is meant that it faithfully represents 

topological information. To clarify this point, consider two simplicial complexes   and   . Let        

be a continuous simplicial map:   takes each  -simplex of   to a   -simplex of   , where     . Then, 

the map   induces a linear transformation                 . It is a simple lemma to show that    takes 

cycles to cycles and boundaries to boundaries; hence there is a well-defined linear transformation on the 

quotient spaces  

              
         [ ]  [     ]  

This is called the induced homomorphism of   on   . Functoriality means that (1) if       is 

continuous then                 is a group homomorphism; and (2) the composition of two maps 

    induces the composition of the linear transformation:             . This correspondence 

allows us to not only relate the spatial and the temporal complexes, but to consider the dynamics of 

simplicial complexes used in this paper to study the formation of different of hippocampal maps, using 

the idea of Homological Persistence. 

 Persistent homologies and barcodes. Consider the collection   ,   , ...,    of spike trains 

corresponding to the   cells. Consider the full simplicial complex    over   vertices. Given     and 

    we define a function          as follows: 

  [         ]     {  [   ]    
  {     }

|    [       ]|   }  

This function is a filtration on the simplicial complex   , and the pair        is called a filtered 

simplicial complex. The concept of filtration is best understood by imagining that the simplicial complex 

is built across time. One starts with an empty simplicial complex and as time goes by, that is, as the rat 

explores the environment, the firing of cells "witnesses" [45] the formation of links between the vertices 

of the simplicial complex. For example, for a cell  , by definition  (i) equals the first time that a 

significant firing is observed in the spike train   . More precisely,  (i) equals the first time   that the spike 

count for    is above   in a window centered at   of size   . 

 Note that by definition, for any simplex   containing  ,       (i). This implies, in particular, 

that a vertex is added to the simplicial complex earlier than any edge containing the vertex. More 
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generally, one also sees that           for any    . Thus we have an increasing family of simplicial 

complexes, parameterized by the real line. Indeed, for each     let  

      {           }  

Then, if            are all the different values taken by      as   ranges in   , we have the 

increasing sequence of simplicial complexes  

                             

Notice that the last inclusion may be strict since it can very well happen that not all the simplices in    

are witnessed [45]. The simplicial complex        above is the one that could be regarded as a proxy for 

 : it contains all the connectivity information produced by all the co-firings that occurred before  . 

 Edelsbrunner and colleagues, however, made the following observation [46]. Since given      

there is a natural inclusion of simplicial complexes             , because of the functoriality property 

described above, one obtains a linear transformation                       for any  . What 

Edelsbrunner et al. observed was that in order to study the homology of a given space one should keep 

track of the entire system of vector spaces           along with all the linear transformations described 

above.  

 Such a system is called a persistence vector space. Importantly, it was shown that persistence 

vector spaces admit a classification analogous to the classification result for finite dimensional vector 

spaces [47], which asserts that two vector spaces of the same dimension are isomorphic. In the case of 

persistence vector spaces, it turns out that attached to each is a barcode (see above and Fig. 3). The 

barcode corresponds to the persistent cycles in the simplicial complex, and any two persistence vector 

spaces with the same barcodes are isomorphic. In the case of the temporal simplicial complex  , these 

barcodes can be interpreted as the "time lines" traced by the topological loops, which characterize the 

stability of the topological structure defined by place cell co-activity patterns. 

 To analyze both simulated and experimental data we used PLEX, a collection of MATLAB 

functions for computational topology that implements the concepts described above. It is freely available 

from http://math.stanford.edu/comptop/programs/. 

 

ACKNOWLEDGEMENTS 

 

We thank the anonymous reviewers and V. Brandt for their critical reading of the manuscript. This work 

was supported by the Sloan and Swartz Foundations and NIH 5F32NS054425 (Y.D.), MH080283 (Y.D. 

and L.F.), DARPA grants HR0011-05-1-0007 and FA8650-06-1-7629, ONR grant N00014-09-1-0783 

and AFOSR Grant FA9550-09-1-0643, (F.M. and G.C) Princeton Subaward 0001716-2 (G.C.)  

 



 22 

REFERENCES 

 

1. O'Keefe J, Dostrovsky J (1971) The hippocampus as a spatial map. Preliminary evidence from unit 

activity in the freely-moving rat. Brain Res 34: 171-175. 

2. O'Keefe J, Nadel L (1978) The hippocampus as a cognitive map. New York: Clarendon Press; Oxford 

University Press. xiv, 570 pp.  

3. Zhang K, Ginzburg I, McNaughton BL, Sejnowski TJ (1998) Interpreting neuronal population activity 

by reconstruction: unified framework with application to hippocampal place cells. J Neurophysiol 

79: 1017-1044. 

4. McNaughton BL, Barnes CA, O'Keefe J (1983) The contributions of position, direction, and velocity to 

single unit activity in the hippocampus of freely-moving rats. Exp Brain Res 52: 41-49. 

5. Brown EN, Frank LM, Tang D, Quirk MC, Wilson MA (1998) A statistical paradigm for neural spike 

train decoding applied to position prediction from ensemble firing patterns of rat hippocampal 

place cells. J Neurosci 18: 7411-7425. 

6. Best PJ, White AM, Minai A (2001) Spatial processing in the brain: the activity of hippocampal place 

cells. Annu Rev Neurosci 24: 459-486. 

7. O'Keefe J, Burgess N (1996) Geometric determinants of the place fields of hippocampal neurons. 

Nature 381: 425-428. 

8. Curto C, Itskov V (2008) Cell groups reveal structure of stimulus space. PLoS Comput Biol 4: 

e1000205. 

9. Igelnik B (2011) Computational modeling and simulation of intellect : current state and future 

perspectives. Hershey, PA: Information Science Reference. xxix, 655 p. p. 

10. Hatcher A (2002) Algebraic topology. Cambridge ; New York: Cambridge University Press. xii, 544 

p. p. 

11. Muller RU, Kubie JL (1987) The effects of changes in the environment on the spatial firing of 

hippocampal complex-spike cells. J Neurosci 7: 1951-1968. 

12. Gothard KM, Skaggs WE, McNaughton BL (1996) Dynamics of mismatch correction in the 

hippocampal ensemble code for space: interaction between path integration and environmental 

cues. J Neurosci 16: 8027-8040. 

13. Gothard KM, Skaggs WE, Moore KM, McNaughton BL (1996) Binding of hippocampal CA1 neural 

activity to multiple reference frames in a landmark-based navigation task. J Neurosci 16: 823-

835. 

14. Diba K, Buzsaki G (2008) Hippocampal network dynamics constrain the time lag between pyramidal 

cells across modified environments. J Neurosci 28: 13448-13456. 



 23 

15. Dubrovin BA, Fomenko AT, Novikov SP (1992) Modern geometry--methods and applications. New 

York: Springer-Verlag. 432 pp. 

16. Buzsaki G (2005) Theta rhythm of navigation: link between path integration and landmark navigation, 

episodic and semantic memory. Hippocampus 15: 827-840. 

17. Buzsaki G (2002) Theta oscillations in the hippocampus. Neuron 33: 325-340. 

18. Lisman JE (1997) Bursts as a unit of neural information: making unreliable synapses reliable. Trends 

Neurosci 20: 38-43. 

19. Huxter JR, Senior TJ, Allen K, Csicsvari J (2008) Theta phase-specific codes for two-dimensional 

position, trajectory and heading in the hippocampus. Nat Neurosci 11: 587-594. 

20. O'Keefe J, Recce ML (1993) Phase relationship between hippocampal place units and the EEG theta 

rhythm. Hippocampus 3: 317-330. 

21. Skaggs WE, McNaughton BL, Wilson MA, Barnes CA (1996) Theta phase precession in 

hippocampal neuronal populations and the compression of temporal sequences. Hippocampus 6: 

149-172. 

22. Frank LM, Stanley GB, Brown EN (2004) Hippocampal plasticity across multiple days of exposure to 

novel environments. J Neurosci 24: 7681-7689. 

23. Davidson TJ, Kloosterman F, Wilson MA (2009) Hippocampal replay of extended experience. 

Neuron 63: 497-507. 

24. Zomorodian AJ (2005) Topology for computing. Cambridge, UK ; New York: Cambridge University 

Press. xiii, 243 p. p. 

25. D'Hooge R, De Deyn PP (2001) Applications of the Morris water maze in the study of learning and 

memory. Brain Res Brain Res Rev 36: 60-90. 

26. Morris RG, Garrud P, Rawlins JN, O'Keefe J (1982) Place navigation impaired in rats with 

hippocampal lesions. Nature 297: 681-683. 

27. McNaughton BL, Barnes CA, Gerrard JL, Gothard K, Jung MW, et al. (1996) Deciphering the 

hippocampal polyglot: the hippocampus as a path integration system. J Exp Biol 199: 173-185. 

28. Abusaad I, MacKay D, Zhao J, Stanford P, Collier DA, et al. (1999) Stereological estimation of the 

total number of neurons in the murine hippocampus using the optical disector. J Comp Neurol 

408: 560-566. 

29. Samsonovich A, McNaughton BL (1997) Path integration and cognitive mapping in a continuous 

attractor neural network model. J Neurosci 17: 5900-5920. 

30. Eckert MJ, Bilkey DK, Abraham WC (2010) Altered plasticity in hippocampal CA1, but not dentate 

gyrus, following long-term environmental enrichment. J Neurophysiol 103: 3320-3329. 

31. Eckert MJ, Abraham WC (2010) Physiological effects of enriched environment exposure and LTP 



 24 

induction in the hippocampus in vivo do not transfer faithfully to in vitro slices. Learn Mem 17: 

480-484. 

32. Fenton AA, Kao HY, Neymotin SA, Olypher A, Vayntrub Y, et al. (2008) Unmasking the CA1 

ensemble place code by exposures to small and large environments: more place cells and 

multiple, irregularly arranged, and expanded place fields in the larger space. J Neurosci 28: 

11250-11262. 

33. Karlsson MP, Frank LM (2008) Network dynamics underlying the formation of sparse, informative 

representations in the hippocampus. J Neurosci 28: 14271-14281. 

34. Shen J, Barnes CA, McNaughton BL, Skaggs WE, Weaver KL (1997) The effect of aging on 

experience-dependent plasticity of hippocampal place cells. J Neurosci 17: 6769-6782. 

35. Cacucci F, Yi M, Wills TJ, Chapman P, O'Keefe J (2008) Place cell firing correlates with memory 

deficits and amyloid plaque burden in Tg2576 Alzheimer mouse model. Proc Natl Acad Sci U S 

A 105: 7863-7868. 

36. Nithianantharajah J, Hannan AJ (2006) Enriched environments, experience-dependent plasticity and 

disorders of the nervous system. Nat Rev Neurosci 7: 697-709. 

37. White AM, Best PJ (2000) Effects of ethanol on hippocampal place-cell and interneuron activity. 

Brain Res 876: 154-165. 

38. Matthews DB, Simson PE, Best PJ (1996) Ethanol alters spatial processing of hippocampal place 

cells: a mechanism for impaired navigation when intoxicated. Alcohol Clin Exp Res 20: 404-407. 

39. Moser EI Open field trajectory data is freely available from. http://www.ntnu.no/cbm/moser/gridcell. 

40. Brown EN, Barbieri R, Ventura V, Kass RE, Frank LM (2002) The time-rescaling theorem and its 

application to neural spike train data analysis. Neural Comput 14: 325-346. 

41. Mizumori SJ (2008) Hippocampal place fields : relevance to learning and memory. Oxford ; New 

York: Oxford University Press. xx, 409 p. p. 

42. Aleksandrov PS (1965) Elementary concepts of topology. New York: F. Ungar Pub. Co. 63 p. p. 

43. Munkres JR (2000) Topology. Upper Saddle River, NJ: Prentice Hall. xvi, 537 p. p. 

44. Dubrovin BA, Fomenko AT, Novikov SP (1984) Modern geometry--methods and applications. New 

York: Springer-Verlag. 

45. de Silva V, and Carlsson, G. Topological estimation using witness complexes. In: Alexa M, and 

Rusinkiewicz, S. , editor; 2004; Zürich. pp. 157-166. 

46. Edelsbrunner H, Letscher, D., and Zomorodian, A. (2002) Topological Persistence and Simplification. 

Discrete & Computational Geometry 28: 511--533. 

47. Zomorodian A, and Carlsson, G. (2005) Computing persistent homology. Discrete & Computational 

Geometry 33: 249--274. 

http://www.ntnu.no/cbm/moser/gridcell


 25 

 

Figure 1. Place fields can be derived from place cell spike trains. (a) As a rat explores a given environment, various place cells 

will fire in spatially discrete locations. Here, for the sake of simplicity, we depict three place fields as they might arise from spike 

trains from three place cells, as in the next panel.  (b) Schematic representation of spike trains fired from three different place 

cells as a rat explores an environment.  Note that there is contemporaneous spiking activity, or co-firing. (c) The place fields 

derived from the three place cells in (b): the co-firing patterns indicates areas of overlap of the place fields. When the rat makes a 

straightforward trajectory through an explored environment, different place cells will be activated and their place fields can 

overlap. 

 

 

 

 

  

Figure 2. Distributions of firing rate and place field size collected by recording place cell firing as a rat explores a linear track. A 

typical place cell fires at a rate of ~10-20 Hz and place fields typically range from 10 to 30 cm across.  These experimentally 

derived distributions serve as realistic constraints on our simulated data by providing proportionality coefficients a and b so that 

the shape of the distributions 𝑷 𝒇  and 𝑷 𝒔  mimics those derived from the experiments. From the data depicted here, a = 1.2 

and b =1.7. 
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Figure 3. Persistent cycles form a topological barcode.  Top and bottom graphs show which 0D and 1D cycles, respectively, 

persist in this cell ensemble. Each colored horizontal line represents one 0D cycle (top panel) or one 1D cycle (bottom panel). 

Initially, until cells begin co-firing, each 0D cycle corresponds to one cell. At later times, both 0D and 1D cells are emergent 

phenomena, produced by co-firing of groups of cells. The dotted red vertical line at 5.84 minutes marks the moment when the 

correct number of loops appears in both 0D and in 1D, which is the minimal map formation time  ̅   . The series of short 

horizontal bars in both panels (some quite miniscule) and the longer lines that disappear before  ̅    represent topological noise, 

i.e., cycles that fail to persist. The one persistent 1D cycles indicates that the environment in question has one physical 

(topological) loop, and the single 0D cycle indicates that the space is connected, of one piece.  Together, this pattern of stable 

bars forms a barcode that can be ‘scanned’ to discern the topological structure of the environment (see Methods).    
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Figure 4. Variations in topology place different demands on hippocampal state. The top row depicts three experimental 

configurations, each two meters square, for our computational simulations; note that the second and third scenarios (B and C) are 

topologically equivalent but geometrically different, and that scenario C will force our simulated rat to adopt a quasi-linear 

trajectory. The dense network of gray lines represents the simulated trajectories. Second row: Point cloud approximations that 

reveal mean map formation times for each space configuration. Each dot represents a hippocampal state as defined by the three 

parameters ( ̅,  ̅, and N); the size of the dot reflects the proportion of trials in which a given set of parameters produced the 

correct outcome; the color of the dot is the mean time over ten simulations.  If, for example, one set of parameters produced the 

correct topological information in 6 out of 10 trials, the dot will be 60% of the size of the largest dot, and the color will reflect the 

mean map formation time for the correct trials. (Blue represents success within the first 25% of the total time; green within the 

first 50%, yellow-orange within the first 75%, and red means success took nearly the whole time period. The maximal observed 

time was 4.3 minutes for configuration A, 11.7 minutes for B, and 9.3 minutes for C.) Note how the third scenario (C) contains a 

preponderance of blue dots, indicating that the majority of hippocampal states easily mapped this environment. This is because 

the two holes are so large that a rat is virtually forced into a straight-line trajectory. Third row: Each dot represents the relative 

standard deviation of map formation times  ̅    for successful trials where   ̅     is very small (<0.15). Fourth row: Combining 

the mean map formation times (second row) with the robustness requirement   ̅     ̅          (third row) reveals a domain 

of stable, robust map formation times that we call the core of the region L in the text. 

 

 

 

 

 

 

 

 Figure 5. 2D sections highlight dependence of map formation times on hippocampal state. These 2D sections are based on the 

point cloud data in Figure 4C, second row (far right). Dot sizes and colors represent the same characteristics as described in 

Figure 4 (i.e., the larger and bluer the dot, the more successful and more rapid the map formation). Graph A fixes the mean place 

field size at 50 cm, and shows that robust map formation in this case requires a larger number of cells firing at a higher rate. 

Graph B shows that, at a mean firing rate of 17 Hz, any ensemble size between 100 and 400 neurons can fairly rapidly form a 

correct topological map as long as the place fields are between 50 and 80 cm.  Graph C shows that an ensemble of 325 cells can 

have mean firing rates from 10 to 35 Hz and form maps quickly and accurately with place field sizes from 40-80 cm.  In short, 

smaller place cell ensembles, with low mean firing rates (�̅�<10 Hz) and too small (�̅�  𝟐𝟎 𝒄𝒎) or too large (�̅�  𝟏𝟎𝟎) mean 

place field sizes, fail to produce the correct topological signature.  In contrast, sufficiently large place cell ensembles with higher 

firing rate neurons and well-tuned place fields reliably capture the topological structure of the environment in a time frame 

comparable to the experimentally observed map formation period. 
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Figure 6. Ergodicity times for the three environments shown in Figure 4. For each environment, the graph shows how much time 

is required to cover a certain percentage of the 3  3 cm spatial bins. This ergodic time scale shows that it takes approximately 

ten minutes for a rat to cover 80% of the environment; by comparison, the topological map formation time for stable regimes is 

much lower. 

Figure 7. Examples of low-dimensional manifolds and their Betti numbers with some of the corresponding loops. (a) A point is a 

0D loop; no higher dimensional loops are present. Thus, each manifold containing at least one point has a 0D loop, so every list 

of Betti numbers starts with a "1". (b) A circle is a 1D loop, with no other loops in higher dimensions. (c) A 2D torus with two 

examples of non-contractible (red) 1D loops, and an example of a 1D loop contractible into a point (green). The 2D surface of the 

torus is the 2D loop listed. (d) A 2D sphere, with two exemplary contractible 1D loops. The 2D surface of the sphere "loops" onto 

itself. 
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